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Abstract
Computation of the observables of a Mössbauer spectrum, primarily the isomer shift, from a
first-principles approach is described. The framework used is density functional theory using
the projector augmented wave formalism (DFT PAW), which enables efficient computation even
of many-electron solids such as SnCl2. The proper PAW version of the isomer shift is derived
and shown to be correct through comparison of computed shifts and experiment in a variety of
compounds based on tin, germanium and zinc. The effects of pressure are considered as well as
motional effects including the Lamb–Mössbauer factor and the second-order Doppler shift.

1. Introduction

Mössbauer spectra reflect the electronic and crystallographic
structure of materials through several observables, including
the isomer shift and the electric field gradient [1, 2]. The
isomer shift is due to both nuclear factors and the difference
in the electron density at the probed nucleus in the source and
the absorber. In comparing a range of materials by way of the
same nuclear transition, the nuclear factors are constant and
the isomer shift can be described in a relative way just through
the electron density. The electric field gradient affects the
Mössbauer spectrum due to coupling to the electric quadrupole
moments of the probed nucleus, which are again constant for a
given nuclear transition. The electric field gradient itself arises
from the distribution of charges in the neighbourhood of the
nucleus, both electronic and ionic. Computing and interpreting
Mössbauer spectra thus becomes in large part a problem of
computing the electron density and the electric field gradient at
the probe nucleus. From these two results the spectrum can be
reconstructed if the nuclear parameters are known, and in any
case different materials can be compared in terms of relative
shifts and couplings.

Computational quantum mechanics provides many
schemes for computing the electron density and electric field
gradient, including wavefunction-based methods in real space
and reciprocal space, and density functional methods also in
real space and reciprocal space [3–12]. One highly accurate
method involves computing the wavefunctions of a molecule
or cluster model of a solid using all-electron real-space meth-
ods [4, 8, 9]. In this method as applied to solids, however, it is

necessary to find ways of truncating the solid accurately, and it
is also difficult to consider perturbations due to mechanical and
electromagnetic fields, and to long-range magnetic ordering.
For solid compounds treated with periodic boundary condi-
tions, the most accurate method is the full-potential linearized
augmented plane wave (LAPW) treatment [8–10, 12], which is
again an all-electron method. This is a highly accurate method
but it is also computationally expensive, and so it is of interest
to investigate whether it is possible using a pseudopotential or
related method to achieve comparable accuracy in solids with
periodic boundary conditions at lower computational cost. Be-
cause pseudopotential methods treat only the valence electrons
explicitly, it is also interesting to study whether this level of
treatment is at all capable of computing local nuclear effects
such as the isomer shift with sufficient accuracy. In fact, per-
haps surprisingly, it has already been shown that the magnetic
chemical shielding [13–15] and electric field gradient [16, 17]
can be accurately treated with pseudopotential methods, pro-
vided that the projector augmented wave method is used to
reconstruct the all-electron expectation values in the valence
space. The core electrons are still treated with pseudized func-
tions in this approach.

Thus, the purpose of the present contribution is to describe
the computation of Mössbauer observables, in particular the
isomer shift, using a scheme based on density functional theory
and the projector augmented wave formalism (PAW). This
method recovers all-electron accuracy in the valence space at
a computational efficiency similar to ultrasoft pseudopotential
schemes. The PAW data can be constructed with relativistic
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corrections, and the scheme presented below is compatible
with a variety of electronic structures: metals and insulators,
magnetic order, strong on-site electron correlation, and so
forth. We describe the implementation in PAW first and then
present a variety of examples using it to compute Mössbauer
observables in tin, germanium and zinc. Special attention
is paid to the effects of pressure and to nuclear motion, in
the form of the Lamb–Mössbauer factor and the second-order
Doppler shift.

2. Theoretical methods

The projector augmented wave method (PAW [18–20]) defines
a linear operator T that acts on pseudowavefunctions |�̃〉 and
recovers all-electron wavefunctions |�〉:

|�〉 = T |�̃〉, (1)

where
T = 1 +

∑

i

(|�i 〉 − |�̃i〉)〈 p̃i |. (2)

Here |�i〉 and |�̃i〉 represent, respectively, all-electron and
pseudopartial waves describing the valence electrons at a given
atom, within a defined cutoff radius. Outside this radius the
two descriptions agree exactly by construction. The projector
functions | p̃i〉 are dual to the |�̃i〉. The cutoff radii are
chosen large enough that the projectors are smooth and all
functions can be expanded with a low-energy plane wave basis
set, but not so large that neighbouring spheres overlap. The
advantage of this formalism is that all-electron accuracy in
the valence space is recovered within a calculation framework
similar in efficiency to ultrasoft pseudopotentials. We will use
this method as implemented in the abinit code in the studies
below [20, 21].

For an observable A, equation (1) above provides a
definition of a pseudo-operator Ã through

〈�|A|�〉 = 〈�̃| Ã|�̃〉. (3)

For a local or semi-local observable A and a complete set of
partial waves |�〉 and |�̃〉, one can show that

Ã = A +
∑

i j

| p̃i〉(〈�i |A|� j〉 − 〈�̃i |A|�̃ j〉)〈 p̃ j |. (4)

These two equations are critical because they provide a
path to calculate the all-electron expectation value of the
observable (the left-hand side of equation (3)) in terms of the
pseudowavefunctions that are computed by a pseudopotential-
based DFT code (the right-hand side of equation (3)).

In Mössbauer spectroscopy, two of the key observables
are the quadrupole coupling and the isomer shift. The
quadrupole coupling arises from an interaction between the
nuclear electric quadrupole moment and the electric field
gradient at the nuclear site. The electric field gradient may
be computed within the PAW method with excellent accuracy
on metals, semiconductors and insulators, and the methods of
implementation have been published and tested [16, 17]. The
isomer shift depends on the electronic wavefunction density

at the nuclear site of both the absorber and source, and is
expressed in velocity units as

δ = c

Eγ

2π Ze2

3
(|�(0)A|2 − |�(0)S|2)�〈r 2〉. (5)

Here c is the speed of light, Eγ the γ -ray energy, Z the
atomic number, e the electron charge and �〈r 2〉 the change
in the mean square nuclear radius for the transition. The
electronic densities |�(0)A|2 and |�(0)S|2 refer to the absorber
and source, respectively.

Within the PAW formalism we identify the observable of
interest for the isomer shift as A = δ(R), that is, the Dirac
delta function evaluated at a nuclear site R. That will certainly
yield the electronic density |�|2 evaluated precisely at the
nuclear point. In order to evaluate the matrix elements of A
in equation (4), it is necessary to specify the form of the partial
waves � and �̃; these are constructed as [20]

�i(r) = uni ,li (r)

r
Sli ,mi (r̂), (6)

�̃i(r) = ũni ,li (r)

r
Sli ,mi (r̂), (7)

that is, as atomic-like orbitals with radial components unl/r
and angular components given by (real) spherical harmonics
Slm , centred at R as the origin. Matrix elements are then
evaluated as

〈�i |δ(r)|� j〉 =
∫

uni ,li

r

un j ,l j

r
Sli ,mi Sl j ,m j

× δ(r)

4πr 2
r 2 sin θ dr dθ dφ

= 1

4π
δli ,l j δmi ,m j

∫
uni ,li un j ,l j

r 2
δ(r) dr, (8)

where we have expressed the δ function in spherical
coordinates as

δ(r) = δ(r)

4πr 2
. (9)

Equation (8) shows that the desired result is

1

4π
δli ,l j δmi ,m j lim

r→0

uni ,li un j ,l j

r 2
. (10)

The limit is unstable numerically because of the denominator.
However, this problem is avoided by using L’Hôspital’s
theorem, which applies because the u functions in the
numerator also go to zero at the origin. In fact applying the
theorem twice yields

lim
r→0

uni ,li un j ,l j

r 2
= u′

ni ,li (0)u′
n j ,l j

(0), (11)

where u′(r) = du(r)/dr . The limiting slopes of the u
functions can be computed very stably from their first few
points, and in this way various extrapolations and numerical
differentiations are avoided.

Two additional simplifications are also used. First,
because of the dependence of the result on the slopes of the
u functions at r = 0, only s-type partial waves contribute.
Second, because the observable of interest is strictly localized
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within the PAW spheres, in the limit of a complete set of partial
waves the contribution to 〈�|A|�〉 = 〈�̃| Ã|�̃〉 from the term
〈�̃|A|�̃〉 in equation (4) will be exactly cancelled by the last
term involving the matrix elements using |�̃〉. Therefore, the
only terms necessary to compute are
∑

i j

〈�̃| p̃i〉〈�i |δ(R)|� j〉〈 p̃ j |�̃〉

= 1

4π

∑

i j,li =l j =0

ρi j u
′
ni ,li (0)u′

n j ,l j
(0) (12)

where ρi j = 〈�̃| p̃i〉〈 p̃ j |�̃〉. The terms ρi j represent the
electron occupation of the i j pair of atomic functions, and are
computed as part of the self-consistency cycle. These factors
represent the details of the electronic configuration of a given
material and can be fractional, in the case of metals, and can
have different values for different spin densities, in the case of
magnetism. From the computational perspective of the present
work, they are simply obtained in the minimization of the total
energy functional and are then combined as above to compute
the observables.

The above method, equation (12), for computing the
isomer shift (more accurately, the Fermi contact interaction)
was implemented in the abinit software package. As
noted above, this package can perform density functional
theory calculations on solids using the PAW formalism. As
implemented it is compatible with variable band occupation
numbers (insulators and metals), variable numbers of spin
densities and variable numbers of spinor wavefunctions.
Therefore one can study magnetic materials and spin–orbit
coupled systems in addition to simple metals and insulators.

The PAW atomic datasets used in this study were
constructed using the atompaw code [22], which has been
adapted for use with abinit. All sets used two projectors
per angular momentum channel and were made using a scalar
relativistic Schrödinger equation and the Perdew–Burke–
Ernzerhof (PBE) generalized gradient approximation exchange
and correlation functions [23]. PAW radii of 2.0–2.3 Bohr
were used, depending on the atom. In the case of the main
group elements studied here (tin and germanium), semi-core
d electrons were included in the valence space in addition to
s and p, leading in each case to 14 valence electrons. The
zinc set used a similar complement of s, p and d channels. In
the solid-state calculations, all properties of interest (energy,
stress, Fermi contact, quadrupole couplings) converged to parts
in 10 000 or better (much better in the case of energy) at
the plane wave cutoff level of 15 Hartree (about 400 eV). In
each case reciprocal space was sampled using Monkhorst–Pack
grids [24] at a density of 0.04 Å

−1
or better.

3. Results and discussion

3.1. Tin-119 isomer shifts

Tin-119 Mössbauer spectra provide a relatively simple test
suite for the theory outlined above, because there are many
examples in the literature with good resolution, there is a
relatively large range in isomer shifts and the solids are not
subject to complicating magnetic or strong electron correlation

Figure 1. Correlation of experimental 119Sn shifts with computed
valence densities. Data from the Mössbauer Effect Data Center
(http://orgs.unca.edu/medc/index.html) referenced to the shift of
119SnO2. Compounds represented from the smallest shift to the
largest are SnF4, SnO2, α-Sn, β-Sn, SnO and SnCl2. The computed
values are expressed in units of electrons per cubic Bohr.

effects. Figure 1 shows the correlation between experimentally
determined isomer shifts and the valence electron density at
the tin nucleus as computed with the scheme discussed above.
Note in the figure that the valence densities are plotted; to
get the absolute total calculated density, to each would be
added the identical term arising from the core density, which
can be obtained in the construction of the PAW datasets. In
the PAW method, as in other pseudopotential methods, the
core density is fixed at the construction of the pseudopotential
and is then identical in all applications. In the present
case, this value is 418 554e/a3

0. Of more importance is the
change in the densities; from equation (5) the slope of the
experimental shift as a function of electron density should be
given by (c/Eγ )(2π Ze2/3)�〈r 2〉, where the core densities of
the absorbers and the total density of the source both appear
in the intercept, being constant values. For 119Sn, Z = 50
and Eγ = 23.875 keV, and so from the slope in figure 1 we
can extract the value �〈r 2〉 = 4.79 × 10−3 fm2. Using this
figure, other samples can be computed and their velocity shifts
calculated for direct comparison with experiment. Moreover,
the figure for �〈r 2〉 we obtain is in reasonable agreement with
other derived values, for example 6–7 × 10−3 fm2 [7, 11] from
linear muffin-tin orbital calculations.

3.2. Germanium-73 isomer shifts

Germanium-73 isomer shifts are not as well defined
experimentally as are tin shifts. Figure 2 shows the correlation
between the valence electron density and the measured
shifts, referenced to bulk germanium. Several experimental
determinations of some of the compounds are shown, along
with their associated errors. For 73Ge, with Z = 32 and
Eγ = 13.3 keV, we obtain from the slope of figure 2 the
estimate �〈r 2〉 = 9.1 × 10−3 fm2. From this value, as
above, computations of other Ge-containing samples may be
compared directly to experiment.
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Figure 2. Correlation of computed valence densities with measured
73Ge isomer shifts. Compounds represented from the smallest shift to
the largest are hexagonal GeO2, rutile GeO2, Ge and GeSe. The
computed values are expressed in units of electrons per cubic Bohr.
Data from [25, 26].

Table 1. Experimental 67Zn Mössbauer shifts from [27], and
calculated valence electron densities, second-order Doppler shifts
(SD) and Lamb–Mössbauer factors (LMF). The valence densities are
computed with the PAW scheme using the experimental crystal
structures. The SD and LMFs are derived from computed phonon
dispersion curves, using density functional perturbation theory. Both
factors are computed at a temperature of 4.2 K. Only isotropic values
are reported.

Compound
Expt. shift
(μm s−1) ρv(0)

SD

(μm s−1) LMF (%)

ZnF2 −174.1 3.925 −27.1 1.56
c-ZnO −130.7 4.869 −25.1 1.67
h-ZnO −110.7 5.464 −27.1 1.65
c-ZnS −56.5 6.479 −22.5 0.67
c-ZnSe −47.0 6.760 −21.8 0.50
c-ZnTe −30.7 7.718 −21.0 0.38

3.3. Zinc-67 isomer shifts

Unlike 119Sn and 73Ge, 67Zn displays a very small isomer
shift range, and the low recoil-free fraction requires that the
experiments be done at very low temperatures. In addition,
theoretical interpretation of the shifts requires consideration of
the second-order Doppler effect, due to the extreme sharpness
of the transition.

We have computed the valence density at zinc in a variety
of compounds, see table 1. In order to compare the calculations
to experiment, it is necessary as mentioned to take the second-
order Doppler effect into account. This term, as is well known,
is expressed in velocity units by

SD = − 1

2c
〈v2〉, (13)

where c is the speed of light and 〈v2〉 is the mean square
velocity of the Mössbauer atom (zinc in the present case).
We computed SD by a first-principles method, using density
functional perturbation theory as implemented in the abinit
package to calculate the phonon dispersion curves [28, 29].
Then, from this information and the phonon eigenvectors, the
mean square velocities were determined. For completeness we

Figure 3. Correlation of experimental 67Zn shifts corrected for the
second-order Doppler shift with computed valence electron densities.
Shift data from [27]; computed second-order Doppler shifts and
valence densities as described in the text and table 1.

Figure 4. Calculated pressure–volume relationship for wurtzite
structured ZnO. The cell volume is scaled to the value at zero
pressure. At each target pressure the cell and ion positions were
relaxed, allowing for anisotropic contraction while maintaining the
space group symmetry.

also calculated the Lamb–Mössbauer factors, which are related
to the mean square displacements of the atoms and the photon
wavevector.

The isomer shifts can be extracted from the experimental
shifts by subtracting the SD contribution as estimated above.
The shifts so constructed are correlated with our calculated
valence densities in figure 3. From the slope of this graph
and equation (5), the term �〈r 2〉 may be determined again
as a consistency check of the computational scheme. Using
parameters for 67Zn (Z = 30 and Eγ = 93.31 keV) we
determine �〈r 2〉 = (19.5 ± 1.6) × 10−3 fm2, in close
agreement with the experimentally determined one of (18 ±
4) × 10−3 fm2 [30].

The case of hexagonal ZnO is particularly interesting
because it undergoes a transition to a cubic structure
at about 11 GPa. This transition has been studied
extensively, by diffraction experiments [31] and by Mössbauer
spectroscopy [32]. We have studied this compound in the low
pressure regime. The calculated pressure–volume relationship
is shown in figure 4. Figures 5 and 6 show, respectively, the
valence density change and electric field gradient coupling
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Figure 5. Dependence of calculated valence electron density as a
function of cell volume, scaled to ambient pressure, in wurtzite
structured ZnO. The results shown here are for the relaxed structures.

e2q Q/h as a function of reduced cell volume. Note that
these calculations were done by optimizing the cell structure
and ion locations for a constant stress tensor describing the
desired hydrostatic pressure; this methodology allows the cell
to contract anisotropically. The plots are made as a function of
cell volume simply to make comparison with literature reports
easier.

The plot of pressure versus cell volume (figure 4) shows
almost perfectly linear behaviour in this regime, and allows
the modulus B = −V0(∂ P/∂V )|V0 to be derived. We find
B = 144.2 ± 1.7 GPa, in good agreement with several
experimental measurements, which found 142.6 GPa [31] and
140 ± 2 GPa [33], but not in good agreement with the value
found by Karzel et al, 204 ± 9 GPa [32].

Considering the electric field gradient, we find by using
the experimental crystal structure [34, 35] the value 2.72 ±
0.27 MHz, where the uncertainty comes from the uncertainty
in the 67Zn electric quadrupole moment [36]. This value is
in fair agreement with the Mössbauer result of 2.401 MHz.
The case of ZnF2 shows a similar level of agreement with
experiment: 6.8 ± 0.7 MHz and asymmetry 0.22, compared
to 7.92 ± 0.05 MHz and 0.29 ± 0.03 [8]. As the cell is
relaxed, the computed value drops to 1.66 MHz, although
the unit cell lengths only lengthen by about 2%, as is typical
when using a generalized gradient functional such as PBE [23].
The value of the density at the Zn nucleus changes similarly;
compare table 1, which shows the result for the experimental
structure, with figure 5, which shows relaxed structures.
Significantly, the ionic contribution to the electric field gradient
hardly changes during the relaxation, essentially all the change
occurs due to redistribution of electron density in different
orbitals at the Zn site. This finding indicates a very high
sensitivity of the chemical bonding in this compound to small
structural changes. As a function of reduced cell volume
we find the coupling to vary with a slope of −4.4 MHz,
considerably less than the value reported from Mössbauer
studies of −18.2 MHz [27]. Likewise, we find the valence
density to change much more slowly with cell volume than
literature reports, −2.00 ± 0.02 versus −10.7 ± 3.4 [27].

Figure 6. Dependence of calculated electric field gradient coupling
in MHz as a function of cell volume, scaled to ambient pressure, in
wurtzite structured ZnO.

Given the success of the PAW method in computing the
isomer shift and the electric field gradient (as measured by
the above results for �〈r 2〉 in 119Sn and 67Zn, and various
reports for electric field gradients [16, 17]), how can the
sharp deviations for wurtzite ZnO be understood? We believe
the key is in the extreme sensitivity of the bonding to local
structural changes. In our calculations we use strictly the
wurtzite structure, while the experimental work found that the
quadrupole asymmetry η also increased sharply with pressure.
This parameter is defined as

η = Vxx − Vyy

Vzz
, (14)

where Vzz , Vyy and Vxx are the principal components of the
electric field gradient tensor ordered from largest to smallest
in magnitude. Thus a non-zero value of η measures the
deviation of the tensor from axial symmetry. However, in
the hexagonal ZnO structure [34, 35], Zn lies on Wyckoff
position 2b of space group P63mc, and this position lies on
a threefold symmetry axis. Therefore, it is not possible to have
a non-zero η for this site. Furthermore, as noted above, the
bulk modulus determined using a similar pressure clamp as the
Mössbauer measurements found a bulk modulus that is not in
good agreement with other experimental determinations.

It would appear that in the Mössbauer experimental
apparatus the pressure applied was not hydrostatic and
broke the symmetry of the hexagonal crystal. Indeed, the
spectrometer is described as having pressure gradients of
less than 10%; we found that by applying strain along the
crystal a axis sufficient to generate about a 10% differential
in the resulting stress tensor elements (and of course also
lowering the symmetry of the crystal), an electric field gradient
asymmetry η of 0.22 was induced. Therefore, the lack of
agreement between theory and experiment in this case is not
a signature that the theory is deficient; rather, that they are
describing two different situations: the computation is for
the fully symmetric hexagonal structure, while the experiment
evidently applied the pressure anisotropically and so generated
a distorted crystal.

5
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4. Conclusions

In this paper we have presented a formalism for computing
the electronic density at the nucleus, which is proportional
to the Mössbauer isomer shift, in a framework suitable for
applications to solids. By using the projector augmented
wave method, all-electron accuracy is recovered in the valence
space, which is shown to be sufficient to model spectra
in a variety of solids. Because the PAW datasets can be
computed with relativistic terms, even heavy elements are
accurately treated. Moreover, because of the flexibility of the
implementation and the fact that it is constructed with periodic
boundary conditions, the effects of mechanical perturbations as
well as complex electronic and magnetic structures are easily
treated. We showed applications in relatively simple cases,
such as a range of tin, germanium and zinc solids, where good
agreement with experimental shifts was obtained. In the case of
hexagonal ZnO, we showed that previous experimental results
using pressure probably included significant distortions due to
anisotropic loading.
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